جبرهای لیپشیتس بردار- مقداری
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه
- نویسنده مریم اسفندانی
- استاد راهنما داود علیمحمدی^cِ[email protected]%
- سال انتشار 1391
چکیده
فرض می کنیمx یک فضای توپولوژیکی فشرده ی هاسدورف بوده و eیک جبر باناخ تعویض پذیر یکانی باشد.دراین پایان نامه ابتدا به معرفی جبر باناخ توابع بردار-مقداری پیوسته ی (c(x,e می پردازیم وفضای ایدآل ماکسیمال آنراتعیین می کنیم.سپس xیک مجموعه ی فشرده درn-فضای مختلط درنظر می گیریم وجبرباناخ توابع بردار-مقداری چندجمله ای (p(x,eرا مورد مطالعه قرار می دهیم وفضای ایدآل ماکسیمال آن را مشخص می کنیم .درادامه فرض می کنیم (x,d)یک فضای متری فشرده باشد وجبرهای لیپشیتس بردار-مقداریرامعرفی می کنیم فضای ایدآل ماکسیمال آنها راتعیین می کنیم .هم چنین هر همریختی روی این جبرها را توصیف می کنیم.درپایان بافرض این که xیک مجموعه ی فشرده درn-فضای مختلط است جبرهای لیپشیتس بردار-مقداری چند جمله ای را مورد بررسی قرار می دهیم وفضای ایدآل ماکسیمال آنها را مشخص می کنیم .به علاوه هر همریختی روی آنها را توصیف می کنیم .
منابع مشابه
اصول تغییراتی بردار مقداری و مسائل تعادل آشفته بردار مقداری
در این پایان نامه به بررسی گسترش بردار مقداری اصول تغییراتی (اصول مینیمم سازی آَشفته) می پردازیم. در واقع منظور این است که اگر z یک کلاس از توابع حقیقی مقدار روی یک فضای متریک کامل x و تابع f از x به r از پایین کراندار و نیم پیوسته پایینی باشد، آیا عنصری مانند g از z موجود است به طوری که تابع g+f مینیمم خود را اختیار کند ؟ مسئله ی فوق را می توان در حالت کلی به صورت یک تابع f از x به y در نظر گ...
15 صفحه اولشرایط کافی برای چگال بودن در جبرهای لیپشیتس توسیع یافته
چکیده. فرض کنیم یک فضای متریک فشرده و یک زیرمجموعه ی فشرده ی ناتهی باشد. فرض کنیم و جبر باناخ همه ی توابع مختلط - مقدار پیوسته بر را نشان دهد که
متن کاملتوابع ناپیوسته از جبرهای لیپشیتس و عملگرهای حافظ مجزایی بین جبرهای کوچک لیپشیتس
در این پایان نامه با فرض این که (x,d) یک فضای متری فشرده باشد، ابتدا به معرفی و بیان برخی از ویژگی های جبرهای لیپشیتس lip?(x,d) برای 1 < ? ?0 و جبرهای کوچک لیپشیتس lip?(x,d) برای 1 < ? < می پردازیم. سپس ایده آل های ماکسیمال این جبر ها را بررسی می کنیم. هم چنین وجود نگاشت های خطی، همریختی ها و مشتق های ناپیوسته بر lip?(x,d) را اثبات می کنیم. در ادامه با فرض این که (x,d) و(y,?) دو فضای متری فشرده...
15 صفحه اولنگاشت های ضربی - محیطی جبرهای لیپشیتس و نگاشت های پوشای ضعیفاً ضربی محیطی جبرهای لیپشیتس برجسته
در این پایان نامه ابتدا به معرفی جبرهای لیپشیتس می پردازیم و برخی از خواص آن ها را بیان می کنیم. در ادامه نگاشت های ضربی - محیطی بین جبرهای لیپشیتس را مورد بررسی قرار می دهیم و ثابت می کنیم هر نگاشت ضربی - محیطی بین جبرهای لیپشیتس یک عملگر ترکیبی موزون است. در پایان نگاشت های پوشای ضعیفاً ضربی محیطی بین جبرهای لیپشیتس برجسته را مورد مطالعه قرار می دهیم و نشان می دهیم هر نگاشت پوشای ضعیفاً ضربی مح...
15 صفحه اولعملگرهای ترکیبی موزون بین فضاهای باناخ توابع لیپشیتس بردار -مقدار
ض کنیم (d ,x) یک فضای متریک فشرده و ( ? . ? , e ) یک فضای باناخ باشد. در این پایان نامه ابتدا به معرفی فضاهای توابع لیپشیتس بردار - مقدار (e ,(d? ,x))lip برای [1 ,0) ? ? و (e ,(d? ,x))lip برای (1 ,0) ? ? میپردازیم. سپس با تعریف یک نرم مناسب بر این فضاها، نشان میدهیم که این فضاها، فضاهای باناخ هستند. در ادامه شرایط لازم وکافی برای کرانداری و فشردگی عملگرهای ترکیبی موزون بین فضاهای توابع لیپش...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023